z-logo
open-access-imgOpen Access
Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis
Author(s) -
Johanna K. DiStefano
Publication year - 2019
Publication title -
cellular and molecular life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.928
H-Index - 223
eISSN - 1420-9071
pISSN - 1420-682X
DOI - 10.1007/s00018-019-03390-0
Subject(s) - lipogenesis , steatosis , fatty liver , fructose , endocrinology , medicine , lipid metabolism , insulin resistance , nonalcoholic fatty liver disease , biology , microsomal triglyceride transfer protein , metabolic syndrome , biochemistry , insulin , diabetes mellitus , lipoprotein , cholesterol , disease , very low density lipoprotein
Nonalcoholic fatty liver disease (NAFLD) is a chronic, frequently progressive condition that develops in response to excessive hepatocyte fat accumulation (i.e., steatosis) in the absence of significant alcohol consumption. Liver steatosis develops as a result of imbalanced lipid metabolism, driven largely by increased rates of de novo lipogenesis and hepatic fatty acid uptake and reduced fatty acid oxidation and/or disposal to the circulation. Fructose is a naturally occurring simple sugar, which is most commonly consumed in modern diets in the form of sucrose, a disaccharide comprised of one molecule of fructose covalently bonded with one molecule of glucose. A number of observational and experimental studies have demonstrated detrimental effects of dietary fructose consumption not only on diverse metabolic outcomes such as insulin resistance and obesity, but also on hepatic steatosis and NAFLD-related fibrosis. Despite the compelling evidence that excessive fructose consumption is associated with the presence of NAFLD and may even promote the development and progression of NAFLD to more clinically severe phenotypes, the molecular mechanisms by which fructose elicits effects on dysregulated liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. The aim of this review is to summarize the current research supporting a role for dietary fructose intake in the modulation of transcriptomic and epigenetic mechanisms underlying the pathogenesis of NAFLD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here