z-logo
Premium
The importance of glycerol in the fatty acid industry
Author(s) -
D'souza G. B.
Publication year - 1979
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/bf02667453
Subject(s) - glycerol , chemistry , distillation , lime , fatty acid , yield (engineering) , chromatography , pulp and paper industry , organic chemistry , materials science , engineering , metallurgy
Abstract Historically, glycerol, a valuable by product of the fatty acid insutry, is priced higher in the market‐place than any of the common fatty acids. Glycerol “credit” from fat‐splitting, frequently in time of economic stress, makes the difference between a profitable stearic acid operation and an economically unsound one. Theoretical yields of glycerol for the common fats and oils range from 9–13.5%; practical plant yields, corrected for FFA and upgrading yield losses, are 9–12.8% on 100% glycerol basis, or 10.3–14.8% on an 88% glycerol basis. Glycerol “credit” per pound of fatty acid ranges from 1 to 3 cents/pound. Upgrading “sweetwaters” from splitting operations in the fatty acid industry requires removal of dissolved salts, elimination of color, and fat and oil impurities, concentration (evaporation of water) and/or distillation. For Twitchellized sweetwaters this generally involves (a.) lime treatment. (b.) filtration, (c.) evaporation to half‐crude, (d.) precipitation of excess lime, (e.) filtration, (f.) evaporation to a concentration of 88–90%, and probably, (g.) distillation. For autoclave or continuous process sweetwaters the upgrading includes (a.) light lime treatment, (b.) filtration, (c.) evaporation concentration to 88–90%, and probably, (d.) distillation. Glycerol may also be upgraded by ion‐exchange processing followed by evaporation concentration in which distillation may be eliminated. Ion‐exclusion (Dow process) is also feasible. Many special triglyceride products are required of different fatty acid homolog distribution than those of the parent or hydrogenated fats and oils. These are prepared by splitting the fats or hydrogenated oils, fractionating the fatty acids, upgrading the glycerol, and recombining the desired fractionated acids with glycerol by reesterification. One example is high lauric triglyceride from coconut oil suited for use as a coco butter substitute.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here