z-logo
Premium
Enzymatic hydrolysis pretreatment for mechanical expelling of soybeans
Author(s) -
Smith D. D.,
Agrawal Y. C.,
Sarkar B. C.,
Singh B. P. N.
Publication year - 1993
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/bf02545348
Subject(s) - pressing , hydrolysis , extrusion , enzymatic hydrolysis , water content , response surface methodology , chemistry , moisture , chromatography , materials science , pulp and paper industry , composite material , biochemistry , organic chemistry , geotechnical engineering , engineering
Mechanical expelling of soybeans with enzymatic hydrolysis as pretreatment was investigated, and the process parameters were optimized by means of response surface methodology. Enzyme pretreatment enhanced both the amount of extractable oil in soybeans and oil extractability. A second‐order response surface model was developed to predict the expelled oil as a function of the six process parameters investigated. The optimum was found at: Moisture content during hydrolysis, 23.00% wet basis (w.b.); enzyme concentration, 11.84% vol/wt; incubation period, 13.24 h; moisture content during pressing, 9.36% w.b.; pressing pressure, 75 MPa; and pressing time, 5.36 min. The parameters had no interactive effects on expelled oil. Pressing pressures above 75 MPa caused extrusion. Under the optimal conditions, oil expelled from dehulled cracked soybeans by static pressing at room temperature (18°C) was 63.5% of the total extractable oil. Much higher oil recovery would be expected in actual screw expellers due to dynamic pressing and higher operating temperature. Oil recovery could be further increased by adding one or more conventional pretreatments to the enzymatic hydrolysis pretreatment investigated in this study.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here