Premium
Inhibition of neutral cholesteryl ester hydrolase by the glycolytic enzyme enolase. Is this a secondary function of enolase?
Author(s) -
Shand John H.,
West David W.
Publication year - 1995
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/bf02537804
Subject(s) - cholesteryl ester , enolase , biochemistry , chemistry , enzyme , sterol o acyltransferase , yeast , hydrolysis , isozyme , cholesterol , biology , lipoprotein , immunohistochemistry , immunology
There is an accumulation of the glycolytic enzyme enolase and of cholesteryl esters in macrophages that have been converted into “foam” cells. In this study, we questioned whether enolase could be involved in this accumulation of cholesteryl esters by inhibiting the activity of neutral cholesteryl ester hydrolases. Enolase from both yeast and rabbit muscle were incubated with three different cholesteryl ester hydrolases and were shown to inhibit the hydrolysis of cholesteryl esters. Inhibition was dependent on the concentration of enolase and appeared to occur through binding of the enolase to the cholesteryl ester. Nevertheless, the yeast and rabbit muscle enolases differed in their efficiency of inhibition and in their mechanism of action. Purification of commercial enolase preparations by gel‐filtration yielded single proteins with the same inhibitory activities as the originals, indicating that the inhibition was not due to the presence of an impurity. Partially purified αα‐and γγ‐isoforms of the enzyme from rat brain also appear to have inhibitory effects on cholesteryl ester hydrolysis. Negative control of the hydrolytic phase of the cholesterol/cholesteryl ester cycle may be a secondary function of enolases which correlates with the accumulation of cholesteryl esters in a number of neuro‐degenerative and demyelinating diseases.