Premium
Metabolism and incorporation into glycerolipids of exogenous 18∶3(n−3) and 18∶3(n−6) by MDCK cells
Author(s) -
Lynch Robert D.,
Locicero Jean,
Schneeberger Eveline E.
Publication year - 1986
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/bf02536402
Subject(s) - degree of unsaturation , polyunsaturated fatty acid , clinical chemistry , metabolism , phospholipid , biochemistry , lipidology , fatty acid , chemistry , de novo synthesis , stereochemistry , biology , enzyme , chromatography , membrane
The extent to which exogenous 18∶3(n−3) and 18∶3(n−6) were desaturated and elongated and the degree to which they and their derivatives altered the unsaturation index of cell glycerolipids were compared using clone 4 MDCK cells grown in lipid‐ and serum‐free medium. Despite differences in the degree of unsaturation of the individual polyunsaturated fatty acids produced from 18∶3(n−3) or 18∶3(n−6), the unsaturation index of phospholipids increased similarly from 0.7 in control cells grown in serum‐ and lipid‐free medium to ca. 1.6 in those supplemented with fatty acid. The added fatty acids had little effect on cell growth. The conversion of 18∶3(n−6) to 20∶3(n−6) and 20∶4(n−6) was more rapid than that of 18∶3(n−3) to 20∶4(n−3) and 20∶5(n−3). No significant quantities of 20∶3(n−3) or 18∶4(n−3) were noted. When both 18∶3 isomers were supplied simultaneously, marked differences in the amounts of some species of n−3 and n−6 polyunsaturated fatty acids were observed. The presence of 18∶3(n−6) and/or its derivatives suppressed levels of 20∶4(n−3) and 20∶5(n−3), perhaps through inhibition of the Δ6 and Δ5 desaturases responsible for their synthesis from 18∶3(n−3). Similarly 18∶3(n−3), and/or its longer more unsaturated derivatives, diminished the formation of 20∶4(n−6) from 18∶3(n−6). No marked effect on the products derived from elongation alone were observed.