z-logo
Premium
The Effects of dietary n−3/n−6 ratio on brain development in the mouse: a dose response study with long‐chain n−3 fatty acids
Author(s) -
Wainwright P. E.,
Huang Y. S.,
BulmanFleming B.,
Dalby D.,
Mills D. E.,
Redden P.,
McCutcheon D.
Publication year - 1992
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/bf02535807
Subject(s) - lipidology , clinical chemistry , brain development , neurochemistry , long chain , chemistry , food science , medicine , endocrinology , biochemistry , biology , neurology , neuroscience , polymer science
This study examines the effects of the ratio of n−3/n−6 fatty acids (FA) on brain development in mice when longchain n−3 FA are supplied in the diet. From conception until 12 days after birth, B6D2F 1 mice were fed liquid diets, each providing 10% of energy from olive oil, and a further 10% from different combinations of free FA concentrates derived from safflower oil (18∶2n−6), and fish oil (20∶5n−3 and 22∶6n−3). The range of dietary n−3/n−6 ratios was 0,025, 0.5, 1.0, 2.0, and 4.0, with an n−6 content of greater than 1.5% of energy in all diets, and similar levels of total polyunsaturated fatty acids (PUFA). In an additional group of ratio 0.5, 18∶2n−6 was partially replaced by its δ6 desaturation product, 18∶3n−6. Biochemical analyses were conducted on 12‐day‐old pup brains, as well as on samples of maternal milk. No obvious effects on overall pup growth and development were observed, apart from a smaller litter size at ratio 1. Co‐variance analysis indicated that increasing the n−3/n−6 ratio was associated with slightly smaller brains, relative to body weight. We found that 18∶2n−6 and 20∶5n−3 were the predominant n−6 and n−3 FA in the milk; in the brain these were 20∶4n−6 and 22∶6n−3, respectively. Increasing dietary n−3/n−6 ratios generally resulted in an increase in n−3 FA, with a corresponding decrease in n−6 FA. The n−3/n−6 ratio of the milk lipids showed a strong linear relationship with the diet, but in the brain the rate of increase tended to decrease beyond 0.5 (phosphatidylcholine, PC) and 0.25 (phosphatidylethanolamine, PE), such that there was a significant quadratic contribution to the relationship. The partial replacement of dietary 18∶2n−6 with 18∶3n−6 raised levels of 20∶4n−6 in milk, brain PC, and brain PE. These results indicate that the n−3/n−6 ratio of the phospholipids in the developing mouse brain responds maximally to maternal dietary long‐chain n−3/n−6 ratios of between 0.25 and 0.5.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom