Premium
Brown adipose tissue triacylglycerol fatty acids of obese and lean mice: In situ and in transplants
Author(s) -
Roberts Jennifer L.,
Ashwell Margaret,
Enser Michael
Publication year - 1986
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/bf02534821
Subject(s) - adipose tissue , medicine , lipogenesis , endocrinology , white adipose tissue , lipidology , biology , brown adipose tissue , fatty acid , transplantation , clinical chemistry , chemistry , biochemistry
Abstract The triacylglcyerols of white adipose tissue (WAT) from animals with high rates of lipogenesis, such as obese hyperglycemic mice or hypothalamically lesioned rats, contain high proportions of palmitoleic acid (16∶1) and low proportions of linoleic acid (18∶2). These differences appear to result from dilution of dietary 18∶2 by synthesized fatty acids, particularly 16∶1. To test this we have investigated the triacylglycerol fatty acid composition of brown and white adipose tissue of lean and obese mice, as brown adipose tissue (BAT) has a higher lipogenic rate than WAT and lipogenesis is faster in obese than in lean mice. Between three and eight weeks of age the proportions of fatty acids in the tissues changed, with a marked fall in milk‐derived lauric and myristic acids. From 8 to 16 weeks they were more stable and the proportions of 16∶1 and 18∶2 in the different tissues were as expected, with the highest and lowest proportions, respectively, in BAT from obese mice. When BAT from obese mice was transplanted under the kidney capsule of lean mice, or vice versa, for one month, the fatty acid composition of the grafts changed toward that of the host BAT. The proportions of 18∶2 and, to a lesser extent, 16∶1 were slightly higher in the grafts than in the hosts but since this also occurred in lean‐to‐lean and obese‐to‐obese grafts it was probably a transplantation artifact. Overall, the results confirm than the physiological environment, rather than the source of the adipose tissue, is the major determinant of its fatty acid composition.