Premium
Identification of steroids by chemical ionization mass spectrometry
Author(s) -
Lin Yong Y.
Publication year - 1980
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/bf02534029
Subject(s) - mass spectrometry , chemistry , chromatography , chemical ionization , direct electron ionization liquid chromatography–mass spectrometry interface , atmospheric pressure chemical ionization , lipidology , identification (biology) , clinical chemistry , ionization , organic chemistry , biochemistry , biology , ion , botany
Chemical ionization (CI) mass spectra of various natural and synthetic steroids have been studied using methane, isobutane, ammonia, trideuterioammonia and hydroxy anion as reagent gases. The CI spectra of steroids give simple and well characterized ions, which provide information about molecular weight as well as functionalities in the molecules. Trideuterioammonia exchanges rapidly with active hydrogens (e.g., OH, SH, COOH, NH 2 ) in steroid molecules in the CI reaction and thus provides a convenient means of active hydrogen determination by mass spectrometry. Application of various CI processes to the analysis of steroids and conjugates have been made. Low levels of hydroxycholesterols in biological samples and in cholesterol autoxidation products were identified by the 4 ion patterns, [M+NH 4 ] + , [M−OH+NH 3 ] + , [M−OH] + and [M−H 2 O−OH] + , in ammonia CI. The position of hydroxy functions in the cholesterol side chain can be identified from the methane CI of hydroxycholesterol trimethylsilyl (TMS) derivatives. Sterol carboxylic esters can be identified as the ammonium adduct ion of the intact molecule, [M+NH 4 ] + , in ammonia CI. Isobutane and hydroxy anion CI spectra of the steroid esters give abundant ion fragments of both steroids and carboxylic acid moieties. Identification of free bile acids and steroid glycosides without derivatization is also feasible with the CI process when ammonia is used as reagent gas.