Premium
Selective effects of fatty acids upon cell growth and metabolic regulation
Author(s) -
Lands William E. M.,
Sacks Roger W.,
Sauter John,
Gunstone Frank
Publication year - 1978
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/bf02533843
Subject(s) - glycerol , chemistry , phospholipid , fatty acid , biochemistry , metabolism , cell growth , cis–trans isomerism , stereochemistry , membrane
Positional isomers of cis ‐methyleneoctadecanoic acid differed greatly in their efficiency for growth of an unsaturated fatty acid auxotroph of Escherichia coli upon glucose as a carbon source. The 8, 9, and 11 isomers were more efficient in producing cells (60–70 cells/fmole) than the others (0–7 cells/fmole), although all isomers were found esterified to a similar extent into cellular lipid. With Saccharomyces cerevisiae mutants, all isomers between 6 and 12 supported some growth of the eukaryotic cells, and the 7 and 9 isomers were slightly more efficient than the 8‐isomer. When E. coli were grown with glycerol, all isomers from 5 to 14 supported growth, and those with the substituent near the center of the acyl chain had the greatest efficiency (70 cells/fmole). With the glycerol medium, the pattern of efficiencies for the various cis ‐methylene acyl chains resembled the broad selectivity reported earlier for the cis ‐ethylenic isomers in glucose medium, which agreed closely with predictions based upon the physical property of their phospholipid derivatives. Thus, metabolism of glycerol appeared to allow the cyclopropane acyl chains to support cell functions to the limits expected for bulk phase chain‐chain fluidity considerations. This broad specificity was also obtained when cells were grown on glucose with cyclic AMP added to the culture. Therefore, the selective inadequacies of the 5, 6, 7, 10, 12 and 13 isomers in supporting cell growth on glucose may occur through an interaction modified by cAMP and dependent upon reduced cellular levels of cyclic AMP. The highly selective pattern of efficiency of the cis ‐methylene acids for E. coli growth on glucose resembles that with the acetylenic acids, but was shifted one carbon atom toward the methyl terminus. This observed selectivity pattern seems due to interactions of the individual acyl chains with cellular protein(s) rather than to chain‐chain interactions in a bulk phase. The ability of certain positional isomers to support cell function equally well in both nutrient conditions suggests that the role of those acyl chain isomers may be independent of metabolite flux or cyclic nucleotide contents of the cell, whereas the actions of other isomeric fatty acids seem closely related to the metabolic status of the cell. A highly selective role for different fatty acids in modulating cellular function seems possible on the basis of the current evidence.