Premium
Fatty acid metabolism in L1210 murine leukemia cells: Differences in modification of fatty acids incorporated into various lipids
Author(s) -
Burns C. Patrick,
Wei ShiaoPing L.,
Spector Arthur A.
Publication year - 1978
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/bf02533743
Subject(s) - biochemistry , fatty acid , glyceride , triglyceride , ethanolamine , lipid metabolism , metabolism , chemistry , clinical chemistry , choline , lipidology , diglyceride , biology , cholesterol
L1210 leukemia cells can utilize all of the main fatty acids that normally are present in the ascites fluid in which they grow. This finding is consistent with the view that L1210 cells derive most of their fatty acids from the ascites fluid. From 80–90% of each fatty acid was incorporated into cell lipids without structural modification, suggesting that the lipid composition of these cells can be altered by changing the type of fatty acids to which they are exposed. Most importantly, the palmitate that was subsequently incorporated into total cell phospholipids was elongated and desaturated somewhat more than that incorporated into triglycerides. This difference was due primarily to more extensive modification of the palmitate incorporated into the ethanolamine phosphoglycerides fraction. Although there was no difference between total phospholipids and triglycerides with linoleate, more of the linoleate incorporated into ethanolamine phosphoglycerides was elongated and further desaturated than that incorporated into choline phosphoglycerides and triglycerides. These findings indicate that fatty acids incorporated into various cell lipid fractions are not structurally modified to the same extent. There appears to be greater modification of fatty acid used for ethanolamine phosphoglyceride synthesis as compared with triglyceride and choline phosphoglyceride synthesis.