Premium
CELL DEATH, SURVIVAL AND PROLIFERATION IN TETRAHYMENA THERMOPHILA . EFFECTS OF INSULIN, SODIUM NITROPRUSSIDE, 8‐BROMO CYCLIC GMP, N G ‐METHYL‐L‐ARGININE AND METHYLENE BLUE
Author(s) -
CHRISTENSEN SØREN T.,
KEMP KÅRE,
QUIE HELENE,
RASMUSSEN LEIF
Publication year - 1996
Publication title -
cell biology international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.932
H-Index - 77
eISSN - 1095-8355
pISSN - 1065-6995
DOI - 10.1006/cbir.1996.0087
Subject(s) - sodium nitroprusside , chemistry , cell growth , hemin , protoporphyrin ix , sodium nitrite , biochemistry , cell , biology , microbiology and biotechnology , endocrinology , nitric oxide , enzyme , heme , photodynamic therapy , organic chemistry
Cells of the ciliate Tetrahymena thermophila produce compounds that act as autocrine (paracrine) survival and/or growth factors. 8‐Bromo cyclic GMP, sodium nitroprusside, hemin, protoporphyrin IX, human recombinant and bovine insulin were tested for their ability to substitute for the cell‐produced factors and stimulate cell survival and proliferation. The cells were inoculated into conical flasks in a nutritionally complete, chemically defined medium at known cell densities from 5 to 5000cells/ml. In unsupplemented medium cells at 5 to 500cells/ml (‘low initial cell density cultures’) died within 8h, whereas cells at 1000 and 5000cells/ml (‘high initial cell density cultures’) proliferated with lag phases lasting for up to 4h. In the presence of insulin compounds, hemin, protoporphyrin IX, or 8‐bromo cyclic GMP, cells also proliferated at all low initial cell densities. Sodium nitroprusside was effective over two separate concentration ranges: at the nanomolar levels as well at low pico‐ to femtomolar levels. At initial population densities of up to 50cells/ml the cells at both concentrations of sodium nitroprusside survived about 4‐fold longer than the controls. At 500 initial cells/ml, cells at thehigh concentrations of sodium nitroprusside survived about 4‐fold longer than those of the control cultures; they proliferated in the low concentrations of sodium nitroprusside. Concentrations of hemin, too low to have any effects on their own, had synergistic effects with sodium nitroprusside. N G ‐methyl‐L‐arginine inhibited proliferation at high initial cell densities. This inhibitory action was reduced by high concentrations of L‐arginine, protoporphyrin IX, sodium nitroprusside, or 8‐bromo cGMP, but not by insulin. Methylene blue inhibited cell proliferation at high initial cell densities. This inhibition was circumvented by addition of 8‐bromo cGMP. The findings that insulin‐related material may be released from Tetrahymena and that insulin and sodium nitroprusside increase intracellular cGMP in these cells are discussed in relation to the presented results. Together these observations suggest that cGMP is responsible for supporting cell survival in Tetrahymena and switching the cells into their proliferative mode, and that cell‐produced signal molecules and insulin stimulate an NO‐dependent guanylate cyclase into producing cGMP.