Premium
Maxwell interface problems‐ existence and uniqueness of solutions for Maxwell's equations
Author(s) -
Boujemaa Saoussen,
Khelifi Abdessatar
Publication year - 2020
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.201800033
Subject(s) - uniqueness , sobolev space , bounded function , maxwell's equations , mathematics , domain (mathematical analysis) , convergence (economics) , mathematical analysis , interface (matter) , space (punctuation) , physics , computer science , gibbs isotherm , economics , thermodynamics , economic growth , operating system , pulmonary surfactant
In this paper, we study the Maxwell interface problem. We provide existence and uniqueness results of solutions of this problem in the harmonic time case. Our results are obtained by setting up the problem as a variational problem in the sobolev space H( curl , Ω ) on a bounded domain. We prove analytical estimates on the convergence of perturbed solution. Numerical examples for different shapes of the domain will be presented.