Premium
Justification and solvability of dynamical contact problems for generalized Marguerre–von Kármán shallow shells
Author(s) -
Ghezal Abderrezak,
Chacha Djamal Ahmed
Publication year - 2018
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.201500296
Subject(s) - class (philosophy) , coulomb friction , mathematics , coulomb , work (physics) , boundary (topology) , type (biology) , boundary value problem , unilateral contact , mathematical analysis , classical mechanics , calculus (dental) , physics , computer science , nonlinear system , finite element method , quantum mechanics , geology , thermodynamics , medicine , dentistry , paleontology , artificial intelligence , electron
In this work, we consider a three–dimensional dynamical model of unilateral contact problems with Signorini conditions and Coulomb friction laws for nonlinearly elastic shallow shells with a specific class of boundary conditions of generalized Marguerre–von Kármán type. Using technics from formal asymptotic analysis, we show that the scaled three–dimensional solution still leads to a two–dimensional dynamical model with frictionless contact problems. Then, we solve the last problems, using penalization method.