Premium
The Korteweg capillarity system. Integrable reduction via gauge and reciprocal links
Author(s) -
Rogers Colin
Publication year - 2016
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.201500019
Subject(s) - integrable system , reciprocal , quintic function , gauge (firearms) , mathematical physics , transformation (genetics) , reduction (mathematics) , gauge theory , nonlinear system , mathematics , classical mechanics , physics , quantum mechanics , geometry , materials science , chemistry , philosophy , linguistics , biochemistry , metallurgy , gene
This classical Korteweg capillarity system is here encapsulated in a quintic derivative nonlinear Schrödinger equation for a model Kármán‐Tsien type capillarity law. An integrable subsystem is isolated and invariants of motion are use to construct novel exact solutions. The latter involve parameters introduced via a gauge and reciprocal transformation.