Premium
Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory
Author(s) -
Aouadi Moncef,
Copetti Maria I. M.
Publication year - 2016
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.201400285
Subject(s) - thermoelastic damping , mathematics , mathematical analysis , finite element method , compact space , nonlinear system , diffusion , boundary value problem , weak solution , infinity , boundary (topology) , numerical analysis , weak formulation , physics , thermal , thermodynamics , quantum mechanics , meteorology
In this paper we investigate the dynamic behaviour of a thermoelastic diffusion rod clamped at one end and moves freely between two stops at the other. The contact is modelled with the Signorini or normal compliance conditions. The coupled system of equations consists of a hyperbolic equation and two parabolic equations. This problem poses new mathematical difficulties due to the nonlinear boundary conditions. The existence of a weak solution is proved using a penalization method and compensated compactness. Moreover, we show that the weak solution converges to zero exponentially as time goes to infinity. We describe the discrete finite element method to our numerical approximations and we show that the given solution converges to the weak solution. Finally, we give an error estimate assuming extra regularity on the solution and we give some results of our numerical experiments.