z-logo
Premium
Drug release from collagen matrices including an evolving microstructure
Author(s) -
Ray N.,
van Noorden T.,
Radu F.A.,
Friess W.,
Knabner P.
Publication year - 2013
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.201200196
Subject(s) - matrix (chemical analysis) , microstructure , drug delivery , swelling , degradation (telecommunications) , drug , diffusion , materials science , biological system , process (computing) , computer science , nanotechnology , thermodynamics , physics , composite material , pharmacology , medicine , telecommunications , biology , operating system
Biodegradable collagen matrices have become a promising alternative to traditional drug delivery systems. The relevant mechanisms in controlled drug release are the diffusion of water into the collagen matrix, the swelling of the matrix coming along with drug release, and enzymatic degradation of the matrix with additional simultaneous drug release. These phenomena have been extensively studied in the past experimentally, via numerical simulations as well as analytically. However, a rigorous derivation of the macroscopic model description, which includes the evolving microstructure due to the degradation process, is still lacking. Since matrix degradation leads to the release of physically entrapped active agent, a good understanding of these phenomena is very important. We present such a derivation using formal twoscale asymptotic expansion in a level set framework and complete our results with numerical simulations in comparison with experimental data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here