z-logo
Premium
Dirichlet‐transmission problems for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian manifolds
Author(s) -
Kohr M.,
Pintea C.,
Wendland W.L.
Publication year - 2013
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.201100194
Subject(s) - sobolev space , lipschitz continuity , pseudodifferential operators , mathematics , besov space , dirichlet distribution , mathematical analysis , pure mathematics , transmission (telecommunications) , interpolation space , functional analysis , computer science , telecommunications , biochemistry , chemistry , gene , boundary value problem
In this paper we use a layer potential analysis to show the existence of solutions for a Dirichlet‐transmission problem for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in compact boundaryless Riemannian manifolds. Compactness and invertibility properties of corresponding layer potential operators on L p , Sobolev, or Besov scales are also obtained.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here