z-logo
Premium
On large‐time energy concentration in solutions to the Navier‐Stokes equations in the whole 3D space
Author(s) -
Skalák Z.
Publication year - 2012
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.201000241
Subject(s) - navier–stokes equations , mathematics , space (punctuation) , energy (signal processing) , order (exchange) , fourier transform , mathematical analysis , operator (biology) , mathematical physics , physics , combinatorics , thermodynamics , computer science , statistics , biochemistry , chemistry , finance , repressor , compressibility , transcription factor , gene , economics , operating system
In the first part of the paper we study the large‐time behavior of the higher‐order space derivatives of solutions to the Navier‐Stokes equations in ℝ 3 . Specifically, we show that if w is a nonzero global weak solution to the Navier‐Stokes equations satisfying the strong energy inequality and 0 < α < β < ∞, then there exist C = C(α,β) > 1, δ 0 = δ 0 (α,β) ∈ (0,1) and t 0 = t 0 (α,β) > 0 such that\documentclass{article}\usepackage{amssymb}\footskip=0pc\pagestyle{empty}\begin{document}$$\frac{||A^\beta w(t)||} {||A^\alpha w(t+\delta)||} \le C $$\end{document}for every t > t 0 and every δ ∈ [0,δ 0 ]. A denotes the Stokes operator and A β its powers. In the second part of the paper we derive several consequences of the above inequality concerning the large‐time energy concentration in w ; we show, for example, that for any positive ε and α\documentclass{article}\usepackage{amssymb}\usepackage{amsmath}\footskip=0pc\pagestyle{empty}\begin{document}$$\lim_{t \rightarrow \infty} \frac {\int_{\mathbf{R}^3 \setminus B_{\sqrt{a+\varepsilon}}(0)}|\xi|^{4\alpha}|F(w(t))(\xi)|^2 d\xi} {\int_{\mathbf{R}^3} |F(w(t))(\xi)|^2 d\xi} = 0, $$\end{document}where a = lim{ t → ∞ ||A 1/2 w(t)|| 2 /||w(t)|| 2 is a nonnegative real number and F denotes the Fourier transform in L 2 (ℝ 3 ) 3 . If 0 < \varepsilonε < a , then\documentclass{article}\usepackage{amssymb}\usepackage{amsmath}\footskip=0pc\pagestyle{empty}\begin{document}$$ \lim_{t \rightarrow \infty} \frac {\int_{B_{\sqrt{a-\varepsilon}}(0)}|\xi|^{4\alpha}|F(w(t))(\xi)|^2 d\xi} {\int_{\mathbf{R}^3} |F(w(t))(\xi)|^2 d\xi} = 0. $$\end{document}

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here