Premium
Existence theorems in the linear theory of micropolar shells
Author(s) -
Eremeyev V.A.,
Lebedev L.P.
Publication year - 2011
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.201000204
Subject(s) - uniqueness , eigenvalues and eigenvectors , statics , mathematics , convergence (economics) , boundary value problem , mathematical analysis , finite element method , spectrum (functional analysis) , physics , classical mechanics , quantum mechanics , economics , thermodynamics , economic growth
Theorems regarding existence and uniqueness of weak solutions to mixed boundary value problems in the linear theory of micropolar shells in statics and dynamics are proved. Convergence of FEM for the static mixed problems is established. Eigenvalue problems for micropolar shells are studied and properties of the spectrum and eigenmodes are formulated.