Premium
Non‐relativistic limit of two‐fluid Euler‐Maxwell equations arising from plasma physics
Author(s) -
Yang J.,
Wang S.
Publication year - 2009
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.200900267
Subject(s) - euler equations , limit (mathematics) , torus , physics , euler's formula , compressible flow , convergence (economics) , compressibility , maxwell's equations , semi implicit euler method , mathematical analysis , energy method , mathematical physics , mathematics , classical mechanics , backward euler method , mechanics , geometry , economics , economic growth
In this paper, the convergence of two‐fluid time‐dependent Euler‐Maxwell equations to two‐fluid compressible Euler‐Poisson equations in a torus via the non‐relativistic limit is studied. The local existence of smooth solutions to both systems is proved by using energy estimates for first order symmetrizable hyperbolic systems. For well prepared initial data, the method of asymptotic expansion and energy methods are used to rigorously justify the convergence of the limit.