Premium
Asymptotic behavior of a Neumann parabolic problem with hysteresis
Author(s) -
Eleuteri M.,
Krejčí P.
Publication year - 2007
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.200610299
Subject(s) - hysteresis , neumann boundary condition , mathematical analysis , infinity , operator (biology) , mathematics , von neumann architecture , homogeneous , space (punctuation) , boundary (topology) , boundary value problem , parabolic partial differential equation , preisach model of hysteresis , state space , magnetic hysteresis , physics , pure mathematics , computer science , partial differential equation , condensed matter physics , quantum mechanics , repressor , chemistry , magnetization , operating system , biochemistry , magnetic field , transcription factor , statistics , combinatorics , gene
Abstract A parabolic equation in two or three space variables with a Preisach hysteresis operator and with homogeneous Neumann boundary conditions is shown to admit a unique global regular solution. A detailed investigation of the Preisach memory dynamics shows that the system converges to an equilibrium in the state space of all admissible Preisach memory configurations as time tends to infinity.