z-logo
Premium
Adaptive Finite Element Discretization in Elasticity and Elastoplasticity by Global and Lokal Error Estimators using Local Neumann‐Problems
Author(s) -
Stein E.,
Ohnimus S.,
Walhorn E.
Publication year - 1999
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.19990791339
Subject(s) - estimator , residual , discretization , discretization error , elasticity (physics) , mathematics , von neumann architecture , finite element method , approximation error , upper and lower bounds , mathematical optimization , mathematical analysis , statistics , algorithm , physics , thermodynamics , pure mathematics
Equivalent to the direct Residual Error Method (REM), the Posterior Equilibrium Method (PEM) is presented for absolute global error estimates, yielding an upper bound with application to elasticity and elastoplasticity. Furthermore, a local residual error estimator is treated, solving local Neumann‐problems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here