Premium
On Behavior of the Extended Spectral Function of a Selfadjoint Operator at Infinity
Author(s) -
Gorbachuk V.
Publication year - 1998
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.19980781534
Subject(s) - infinity , operator (biology) , mathematics , element (criminal law) , singularity , function (biology) , spectral properties , mathematical analysis , degree (music) , pure mathematics , physics , chemistry , biochemistry , repressor , evolutionary biology , biology , political science , transcription factor , astrophysics , law , gene , acoustics
This paper is devoted to studying the relationship between the growth rate at infinity of the so called extended spectral function of a selfadjoint operator on a fixed element and rhe degree of singularity of this element.