Premium
Applied mathematics and mechanics
Author(s) -
Pan Cheng,
Jin Huang,
Guang Zeng
Publication year - 2010
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.19920720407
From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are presented to obtain the eigen- solutions that are used to solve Laplace's equations. The MQMs possess high accuracy and low computation complexity. The convergence and the stability are proved based on Anselone's collective and asymptotical compact theory. An asymptotic expansion with odd powers of the errors is presented. By the h 3 -Richardson extrapolation algorithm (EA), the accuracy order of the approximation can be greatly improved, and an a poste- riori error estimate can be obtained as the self-adaptive algorithms. The efficiency of the algorithm is illustrated by examples.