Premium
On Two Higher Order Enclosing Methods of J. W. Schmidt
Author(s) -
Alefeld G.,
Potra F. A.
Publication year - 1988
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.19880680802
Subject(s) - monotone polygon , mathematics , convergence (economics) , scalar (mathematics) , order (exchange) , function (biology) , derivative (finance) , iterative method , nonlinear system , mathematical analysis , mathematical optimization , geometry , physics , finance , quantum mechanics , evolutionary biology , financial economics , economics , biology , economic growth
We consider modifications of two iterative procedures of J. W. Schmidt which, under appropriate conditions provide monotone enclosures for the solution of a nonlinear equation. The order of convergence of the first method is 3 and in the scalar case it requires two function‐ and one derivative‐evaluation per iteration step, while the second one has the convergence order equal to 1 + √2 and it requires only two function‐evaluations per step.