z-logo
Premium
Stability of Numerical Methods for Volterra Integro‐Differential Equations of Convolution Type
Author(s) -
Bakke V. L.,
Jackiewicz Z.
Publication year - 1988
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.19880680210
Subject(s) - convolution (computer science) , mathematics , stability (learning theory) , volterra integral equation , differential equation , volterra equations , numerical stability , integro differential equation , type (biology) , mathematical analysis , numerical analysis , differential (mechanical device) , integral equation , nonlinear system , computer science , physics , first order partial differential equation , ecology , quantum mechanics , machine learning , artificial neural network , biology , thermodynamics
Stability properties of numerical methods for Volterra integro differential equations based on the convolution test equation\documentclass{article}\pagestyle{empty}\begin{document}$$ y\prime\left( t\right) = \gamma y\left( t \right) + \int\limits_0^t {\left( {\lambda + \mu \left( {t - s} \right)} \right)y\left( s \right)ds,} \,\,\,\,\,\,\,\,t \mathbin{\lower.3ex\hbox{$\buildrel>\over {\smash{\scriptstyle=}\vphantom{_x}}$}} 0,\,\,\,\,\,\,\,y\left( 0 \right) = 1, $$\end{document} are investigated. Stability regions of reducible linear multistep methods and modified multilag methods are given and compared.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here