Premium
Convergence of Sequences of Linear Functionals
Author(s) -
Jim Pozo M. A. Énez
Publication year - 1981
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.19810611004
Subject(s) - mathematics , linear operators , limit (mathematics) , convergence (economics) , continuous linear operator , operator (biology) , linear map , identity (music) , operator theory , type (biology) , functional analysis , pure mathematics , mathematical analysis , physics , economics , biochemistry , chemistry , repressor , biology , transcription factor , bounded function , gene , economic growth , acoustics , ecology
The aim of this paper is to complete the theory of some qualitative and quantitative theorems of Korovkin's type in spaces of continuous functions when the limit linear functional (or operator) is not the identity and the considered linear functionals (or operators) are not necessarily positive.