Premium
Stress Functions for Elastic Dielectrics
Author(s) -
Glockner P. G.,
Chowdhury K. L.
Publication year - 1979
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/zamm.19790591002
Subject(s) - dielectric , compatibility (geochemistry) , cauchy stress tensor , boundary value problem , polarization (electrochemistry) , mathematical analysis , tensor (intrinsic definition) , materials science , linear elasticity , mathematics , physics , geometry , composite material , finite element method , thermodynamics , chemistry , optoelectronics
Abstract Beltrami‐type representations are constructed for the stress tensor, the polarization vector, and the electric tensor for Mindlin's theory of elastic dielectrics including polarization gradient effects. Using these representations and the linear compatibility conditions, stress boundary value problems of linear elastic dielectrics are formulated. This formulation is applied to one and two dimensional problems of dielectric half spaces and the results obtained therefrom are compared with corresponding solutions available in the literature [1,2].