Premium
Fabrication of SAPO‐34 with Tuned Mesopore Structure
Author(s) -
Razavian Marjan,
Fatemi Shohreh
Publication year - 2014
Publication title -
zeitschrift für anorganische und allgemeine chemie
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 66
eISSN - 1521-3749
pISSN - 0044-2313
DOI - 10.1002/zaac.201400149
Subject(s) - mesoporous material , microporous material , polyethylene glycol , chemical engineering , dehydrogenation , materials science , peg ratio , molecular sieve , catalysis , selectivity , methanol , crystal structure , crystal (programming language) , adsorption , organic chemistry , chemistry , finance , computer science , engineering , economics , programming language
Crystalline SAPO‐34 molecular sieves with hierarchical network were synthesized employing polyethylene glycol (PEG) as the meso‐generating agent via a self‐assembly strategy. XRD, FESEM, N 2 adsorption‐desorption and FT‐IR spectroscopic analyses showed that PEG co‐template has a decisive role in tailoring the pore structure and producing a tuned structure from microporous towards the mesoporous structure. Also, addition of PEG favored the formation of more uniform and smaller crystals than the conventional SAPO‐34. In fact, PEG did not only control the size of crystals due to its crystal growth inhibiting (CGI) effect but also modified the morphology of the crystals and improved CSD (crystal size distribution) along with induction of mesopores into the porous structure. The modified SAPO‐34 would be recommended for selective formation of light olefins through the acid‐catalyzed reactions, such as the conversion of methanol to olefins/propylene (MTO/MTP) and propane dehydrogenation (PDH) to produce olefins with higher selectivity and catalyst stability than the conventional SAPO‐34.