z-logo
Premium
Synthesis, Crystal Structures, Thermal and Magnetic Properties of New Selenocyanato Coordination Polymers with Pyrazine as Co‐Ligand
Author(s) -
Wriedt Mario,
Näther Christian
Publication year - 2011
Publication title -
zeitschrift für anorganische und allgemeine chemie
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 66
eISSN - 1521-3749
pISSN - 0044-2313
DOI - 10.1002/zaac.201000422
Subject(s) - pyrazine , crystallography , ligand (biochemistry) , antiferromagnetism , chemistry , crystal structure , octahedron , single crystal , coordination polymer , metal , magnetic susceptibility , coordination complex , stereochemistry , organic chemistry , biochemistry , physics , receptor , condensed matter physics
Reaction of iron(II), cobalt(II) and nickel(II) selenocyanate with pyrazine in water at room temperature leads to the formation of the isotypic new ligand‐rich 1:2 (1:2 = ratio between metal and co‐ligand) compounds [ M (NCSe) 2 (pyrazine) 2 ] n ( M = Fe ( 1 ), Co ( 2 ), Ni ( 3 )). The crystal structure of 2 was determined by X‐ray single crystal analysis and those of 1 and 3 were refined from X‐ray powder data with the Rietveld method. In their crystal structure the metal(II) cations are coordinated by four pyrazine co‐ligands, which connect them into layers, and two terminally N ‐bonded selenocyanato anions in a distorted octahedral arrangement. The terminal coordination mode of the selenocyanato anions was further emphasized by IR spectroscopic investigations. On heating, all compounds decompose in a single heating step without the formation of ligand‐deficient intermediates like previously reported for related thiocyanato compounds. Magnetic measurements of compound 1 show a long‐range antiferromagnetic ordering with an ordering temperature of T N = 6.7 K, which must be mediated by the aromatic π‐system of the pyrazine ligand, whereas 2 and 3 show only Curie–Weiss behavior with antiferromagnetic exchange interactions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here