z-logo
Premium
Nobel‐Metal Centered Polycations [Au@Bi 10 ] 5+ or [Pd@Bi 10 ] 4+ Embedded in Halogenido‐Bismuthate(III)‐Stannate(II) Frameworks
Author(s) -
Wahl Bernhard,
Erbe Manuela,
Gerisch Alexander,
Kloo Lars,
Ruck Michael
Publication year - 2009
Publication title -
zeitschrift für anorganische und allgemeine chemie
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 66
eISSN - 1521-3749
pISSN - 0044-2313
DOI - 10.1002/zaac.200900087
Subject(s) - crystallography , stannate , metal , bismuth , cluster (spacecraft) , chemistry , trigonal crystal system , crystal structure , population , materials science , zinc , organic chemistry , computer science , programming language , demography , sociology
The metal‐rich halogenides AuBi 14– δ Sn 2+ δ X 21– δ ( δ ≈ 0.4) and PdBi 15– δ Sn 1+ δ X 21– δ ( δ ≈ 0.6) with X = Cl, Br were crystallized from melts of the metals and Bi X 3 . In the rhombohedral structures (space group R $\bar{3}$ ; a ≈ 1050 pm; α ≈ 94°), noble‐metal centered pentagonal antiprisms [Au@Bi 10 ] 5+ resp. [Pd@Bi 10 ] 4+ are embedded in halogenidometallate frameworks ∞ 3 [Bi 4– δ Sn 2+ δ X 21– δ ] 5– resp. ∞ 3 [Bi 5– δ Sn 1+ δ X 21– δ ] 4– . Mixed Bi III /Sn II site occupation allows the framework to adopt different charges. Further exchange of Bi III X 3 against Sn II X 2 results in vacancies ( δ ) on the position of an isolated halide ion. In quantum chemical calculations the naked metal‐clusters are found to be stable in D 5 d symmetry with interatomic distances close to the observed ones. The significance of interactions between the Wade‐type host cluster Bi 10 4+ and the closed‐subshell guest atoms Au + or Pd 0 is reflected in the molecular orbital diagram, the population analyses and the ELI‐D.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here