Premium
DFT Calculations of the Molecular Force Field of Vanadyl Nitrate, VO(NO 3 ) 3
Author(s) -
Brandán S. A.,
Socolsky C.,
Altabef Aida Ben
Publication year - 2009
Publication title -
zeitschrift für anorganische und allgemeine chemie
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 66
eISSN - 1521-3749
pISSN - 0044-2313
DOI - 10.1002/zaac.200801244
Subject(s) - natural bond orbital , density functional theory , denticity , chemistry , molecular vibration , raman spectroscopy , molecule , normal mode , computational chemistry , crystallography , vibration , crystal structure , physics , organic chemistry , quantum mechanics , optics
A structural and vibrational theoretical study for vanadyl nitrate was carried out. The Density Functional Theory (DFT) has been used to study vibrational properties. The structures were fully optimized at the B3LYP/6‐31G*, B3LYP/6‐311G*, and B3LYP/6‐311+G* levels of theory and the harmonic vibrational frequencies were evaluated at the same level. The calculated harmonic vibrational frequencies for vanadyl nitrate are consistent with their experimental IR and Raman spectra in gas and liquid phases. Through these calculations a precise knowledge of the normal modes of vibration was obtained, considering the coordination mode adopted by the nitrate group in the mirror plane as monodentate and bidentate. A total assignment of the observed bands in the vibrational spectra for vanadyl nitrate is proposed in this work. The nature of the V–O and V ← O bonds in the compound was systematically and quantitatively investigated by means of the Natural Bond Order (NBO) analysis. The topological properties of the electronic charge density were analyzed employing Bader's Atoms in Molecules theory (AIM).