Premium
Cloning, sequencing and characterization of a gene encoding dihydroxyacetone kinase from Zygosaccharomyces rouxii NRRL2547
Author(s) -
Wang ZhengXiang,
Kayingo Gerald,
Blomberg Anders,
Prior Bernard A.
Publication year - 2002
Publication title -
yeast
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.923
H-Index - 102
eISSN - 1097-0061
pISSN - 0749-503X
DOI - 10.1002/yea.928
Subject(s) - dihydroxyacetone , biology , biochemistry , saccharomyces cerevisiae , peptide sequence , open reading frame , gene , microbiology and biotechnology , glycerol
The dihydroxyacetone pathway, an alternative pathway for the dissimilation of glycerol via reduction by glycerol dehydrogenase and subsequent phosphorylation by dihydroxyacetone (DHA) kinase, is activated in the yeasts Saccharomyces cerevisiae and Zygosaccharomyces rouxii during osmotic stress. In experiments aimed at investigating the physiological function of the DHA pathway in Z. rouxii , a typical osmotolerant yeast, we cloned and characterized a DAK gene encoding dihydroxyacetone kinase from Z. rouxii NRRL 2547. Sequence analysis revealed a 1761 bp open reading frame, encoding a peptide composed of 587 deduced amino acids with the predicted molecular weight of 61 664 Da. As the amino acid sequence was most closely homologous (68% identity) to the S. cerevisiae Dak1p, we named the gene and protein ZrDAK1 and ZrDak1p, respectively. A putative ATP binding site was also found but no consensus element associated with osmoregulation was found in the upstream region of the ZrDAK1 gene. The ZrDAK1 gene complemented a S. cerevisiae W303‐1A dak1Δdak2Δ strain by improving the growth of the mutant on 50 mmol/l dihydroxyacetone and by increasing the tolerance to dihydroxyacetone in a medium containing 5% sodium chloride, suggesting that it is a functional homologue of the S. cerevisiae DAK1 . However, expression of the ZrDAK1 gene in the S. cerevisiae dak1Δdak2Δ strain had no significant effect on glycerol levels during osmotic stress. The ZrDAK1 sequence has been deposited in the public data bases under Accession No. AJ294719; regions upstream and downstream of ZrDAK1 are deposited as Accession Nos AJ294739 and AJ294720, respectively. Copyright © 2002 John Wiley & Sons, Ltd.