Premium
Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
Author(s) -
Karhumaa Kaisa,
HahnHägerdal Bärbel,
GorwaGrauslund MarieF.
Publication year - 2005
Publication title -
yeast
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.923
H-Index - 102
eISSN - 1097-0061
pISSN - 0749-503X
DOI - 10.1002/yea.1216
Subject(s) - xylose isomerase , xylose , biochemistry , biology , transaldolase , xylose metabolism , pentose phosphate pathway , saccharomyces cerevisiae , pentose , isomerase , transketolase , fermentation , yeast , gene , enzyme , glycolysis
A Saccharomyces cerevisiae screening strain was designed by combining multiple genetic modifications known to improve xylose utilization with the primary objective of enhancing xylose growth and fermentation in xylose isomerase (XI)‐expressing strains. Strain TMB 3045 was obtained by expressing the XI gene from Thermus thermophilus in a strain in which the GRE3 gene coding for aldose reductase was deleted, and the genes encoding xylulokinase (XK) and the enzymes of the non‐oxidative pentose phosphate pathway (PPP) [transaldolase (TAL), transketolase (TKL), ribose 5‐phosphate ketol‐isomerase (RKI) and ribulose 5‐phosphate epimerase (RPE)] were overexpressed. A xylose‐growing and fermenting strain (TMB 3050) was derived from TMB 3045 by repeated cultivation on xylose medium. Despite its low XI activity, TMB 3050 was capable of aerobic xylose growth and anaerobic ethanol production at 30 °C. The aerobic xylose growth rate reached 0.17 l/h when XI was replaced with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes expressed from a multicopy plasmid, demonstrating that the screening system was functional. Xylose growth had not previously been detected in strains in which the PPP genes were not overexpressed or when overexpressing the PPP genes but having XR and XDH genes chromosomally integrated. This demonstrates the necessity to simultaneously increase the conversion of xylose to xylulose and the metabolic steps downstream of xylulose for efficient xylose utilization in S. cerevisiae . Copyright © 2005 John Wiley & Sons, Ltd.