z-logo
Premium
Nondestructive elemental depth profiling of Japanese lacquerware ‘Tamamushi‐nuri’ by confocal 3D‐XRF analysis in comparison with micro GE‐XRF
Author(s) -
Nakano Kazuhiko,
Tsuji Kouichi
Publication year - 2009
Publication title -
x‐ray spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 45
eISSN - 1097-4539
pISSN - 0049-8246
DOI - 10.1002/xrs.1163
Subject(s) - pinhole (optics) , optics , confocal , materials science , x ray fluorescence , analytical chemistry (journal) , fluorescence , physics , chemistry , environmental chemistry
We have applied recently two XRF (micro x‐ray fluorescence) methods [micro‐Grazing Exit XRF (GE‐XRF) and confocal 3D‐XRF] to Japanese lacquerware ‘Tamamushi‐nuri.’ A laboratory grazing‐exit XRF (GE‐XRF) instrument was developed in combination with a micro‐XRF setup. A micro x‐ray beam was produced by a single capillary and a pinhole aperture. Elemental x‐ray images (2D images) obtained at different analyzing depths by micro GE‐XRF have been reported. However, it was difficult to directly obtain depth‐selective x‐ray spectra and 2D images. A 3D XRF instrument using two independent polycapillary x‐ray lenses and two x‐ray sources (Cr and Mo targets) was also applied to the same sample. 2D XRF images of a Japanese lacquerware showed specific distributions of elements at the different depths, indicating that ‘Tamamushi‐nuri’ lacquerware has a layered structure. The merits and disadvantages of both the micro GE‐XRF and confocal micro XRF methods are discussed. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here