Premium
Trace element mapping of a single cell using a hard x‐ray nanobeam focused by a Kirkpatrick‐Baez mirror system
Author(s) -
Matsuyama S.,
Shimura M.,
Mimura H.,
Fujii M.,
Yumoto H.,
Sano Y.,
Yabashi M.,
Nishino Y.,
Tamasaku K.,
Ishikawa T.,
Yamauchi K.
Publication year - 2008
Publication title -
x‐ray spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 45
eISSN - 1097-4539
pISSN - 0049-8246
DOI - 10.1002/xrs.1123
Subject(s) - achromatic lens , resolution (logic) , optics , fluorescence , organelle , physics , microscopy , x ray , materials science , chemistry , analytical chemistry (journal) , biochemistry , chromatography , artificial intelligence , computer science
To visualize the distributions of trace elements in biological samples such as tissues and cells at high spatial resolution, we developed a scanning x‐ray fluorescence microscope (SXFM) at SPring‐8, using a Kirkpatrick‐Baez mirror optics that enables achromatic and highly efficient focusing. To evaluate performance regarding its application to biological samples, the SXFM was used at x‐ray energy of 15 keV to observe NIH/3T3 cells in which adenosine triphosphate (ATP) synthase β (specifically localized at the mitochondria) were labeled with gold colloidal particles. Various elemental distributions were visualized at the single‐cell level, including those for P, S, Cl, Ca, Fe, Cu, Zn and Au, and we obtained high‐resolution elemental distribution maps by magnifying the labeled single mitochondrion. Maximum spatial resolution achieved in the experiments was sub‐100 nm. Copyright © 2008 John Wiley & Sons, Ltd.