z-logo
Premium
Integrating transcription and splicing into cell fate: Transcription factors on the block
Author(s) -
Boumpas Panagiotis,
Merabet Samir,
Carnesecchi Julie
Publication year - 2022
Publication title -
wiley interdisciplinary reviews: rna
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.225
H-Index - 71
eISSN - 1757-7012
pISSN - 1757-7004
DOI - 10.1002/wrna.1752
Subject(s) - rna splicing , biology , alternative splicing , cell fate determination , splicing factor , computational biology , transcription factor , microbiology and biotechnology , exonic splicing enhancer , multicellular organism , genetics , rna , rna binding protein , gene , exon
Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine‐tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue‐specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein‐RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here