Premium
On the role of mRNA secondary structure in bacterial translation
Author(s) -
Chiaruttini Claude,
Guillier Maude
Publication year - 2019
Publication title -
wiley interdisciplinary reviews: rna
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.225
H-Index - 71
eISSN - 1757-7012
pISSN - 1757-7004
DOI - 10.1002/wrna.1579
Subject(s) - translation (biology) , riboswitch , messenger rna , ribosome , rna , open reading frame , computational biology , protein biosynthesis , biology , ribosome profiling , genetics , transcription (linguistics) , microbiology and biotechnology , ribosomal binding site , translational frameshift , non coding rna , gene , peptide sequence , linguistics , philosophy
Messenger RNA (mRNA) is no longer considered as a mere informational molecule whose sole function is to convey the genetic information specified by DNA to the ribosome. Beyond this primary function, mRNA also contains additional instructions that influence the way and the extent to which this message is translated by the ribosome into protein(s). Indeed, owing to its intrinsic propensity to quickly and dynamically fold and form higher order structures, mRNA exhibits a second layer of structural information specified by the sequence itself. Besides influencing transcription and mRNA stability, this additional information also affects translation, and more precisely the frequency of translation initiation, the choice of open reading frame by recoding, the elongation speed, and the folding of the nascent protein. Many studies in bacteria have shown that mRNA secondary structure participates to the rapid adaptation of these versatile organisms to changing environmental conditions by efficiently tuning translation in response to diverse signals, such as the presence of ligands, regulatory proteins, or small RNAs. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation