Premium
Posttranscriptional control of airway inflammation
Author(s) -
Ezegbunam Wendy,
Foronjy Robert
Publication year - 2017
Publication title -
wiley interdisciplinary reviews: rna
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.225
H-Index - 71
eISSN - 1757-7012
pISSN - 1757-7004
DOI - 10.1002/wrna.1455
Subject(s) - rna , inflammation , microrna , messenger rna , biology , rna binding protein , proinflammatory cytokine , non coding rna , translation (biology) , pathogenesis , immunology , gene expression , microbiology and biotechnology , gene , genetics
Acute inflammation in the lungs is a vital protective response, efficiently and swiftly eliminating inciters of tissue injury. However, in respiratory diseases characterized by chronic inflammation, such as chronic obstructive pulmonary disease and asthma, enhanced expression of inflammatory mediators leads to tissue damage and impaired lung function. Although transcription is an essential first step in the induction of proinflammatory genes, tight regulation of inflammation requires more rapid, flexible responses. Increasing evidence shows that such responses are achieved by posttranscriptional mechanisms directly affecting mRNA stability and translation initiation. RNA‐binding proteins, microRNAs, and long noncoding RNAs interact with messenger RNA and each other to impact the stability and/or translation of mRNAs implicated in lung inflammation. Recent research has shown that these biological processes play a central role in the pathogenesis of several important pulmonary conditions. This review will highlight several posttranscriptional control mechanisms that influence lung inflammation and the known associations of derangements in these mechanisms with common respiratory diseases. WIREs RNA 2018, 9:e1455. doi: 10.1002/wrna.1455 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability