Premium
Virus‐derived small RNAs: molecular footprints of host–pathogen interactions
Author(s) -
Aguiar Eric Roberto Guimarães Rocha,
Olmo Roenick Proveti,
Marques João Trindade
Publication year - 2016
Publication title -
wiley interdisciplinary reviews: rna
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.225
H-Index - 71
eISSN - 1757-7012
pISSN - 1757-7004
DOI - 10.1002/wrna.1361
Subject(s) - host (biology) , biology , pathogen , computational biology , virus , virology , genetics
Viruses are obligatory intracellular parasites that require the host machinery to replicate. During their replication cycle, viral RNA intermediates can be recognized and degraded by different antiviral mechanisms that include RNA decay, RNA interference, and RNase L pathways. As a consequence of viral RNA degradation, infected cells can accumulate virus‐derived small RNAs at high levels compared to cellular molecules. These small RNAs are imprinted with molecular characteristics that reflect their origin. First, small RNAs can be used to reconstruct viral sequences and identify the virus from which they originated. Second, other molecular features of small RNAs such as size, polarity, and base preferences depend on the type of viral substrate and host mechanism of degradation. Thus, the pattern of small RNAs generated in infected cells can be used as a molecular footprint to identify and characterize viruses independent on sequence homology searches against known references. Hence, sequencing of small RNAs obtained from infected cells enables virus discovery and characterization using both sequence‐dependent strategies and novel pattern‐based approaches. Recent studies are helping unlock the full application of small RNA sequencing for virus discovery and characterization. WIREs RNA 2016, 7:824–837. doi: 10.1002/wrna.1361 This article is categorized under: RNA Processing > Processing of Small RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Methods > RNA Analyses In Vitro and In Silico