Premium
Hydraulic validation of two‐dimensional simulations of braided river flow with spatially continuous aDcp data
Author(s) -
Williams R. D.,
Brasington J.,
Hicks M.,
Measures R.,
Rennie C. D.,
Vericat D.
Publication year - 2013
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/wrcr.20391
Subject(s) - hydrology (agriculture) , geology , environmental science , flow (mathematics) , geotechnical engineering , mathematics , geometry
Gravel‐bed braided rivers are characterized by shallow, branching flow across low relief, complex, and mobile bed topography. These conditions present a major challenge for the application of higher dimensional hydraulic models, the predictions of which are nevertheless vital to inform flood risk and ecosystem management. This paper demonstrates how high‐resolution topographic survey and hydraulic monitoring at a density commensurate with model discretization can be used to advance hydrodynamic simulations in braided rivers. Specifically, we detail applications of the shallow water model, Delft3d, to the Rees River, New Zealand, at two nested scales: a 300 m braid bar unit and a 2.5 km reach. In each case, terrestrial laser scanning was used to parameterize the topographic boundary condition at hitherto unprecedented resolution and accuracy. Dense observations of depth and velocity acquired from a mobile acoustic Doppler current profiler (aDcp), along with low‐altitude aerial photography, were then used to create a data‐rich framework for model calibration and testing at a range of discharges. Calibration focused on the estimation of spatially uniform roughness and horizontal eddy viscosity, ν H , through comparison of predictions with distributed hydraulic data. Results revealed strong sensitivity to ν H , which influenced cross‐channel velocity and localization of high shear zones. The high‐resolution bed topography partially accounts for form resistance, and the recovered roughness was found to scale by 1.2–1.4 D 84 grain diameter. Model performance was good for a range of flows, with minimal bias and tight error distributions, suggesting that acceptable predictions can be achieved with spatially uniform roughness and ν H .