Premium
Electrically active nanomaterials as improved neural tissue regeneration scaffolds
Author(s) -
Seil Justin T.,
Webster Thomas J.
Publication year - 2010
Publication title -
wiley interdisciplinary reviews: nanomedicine and nanobiotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 72
eISSN - 1939-0041
pISSN - 1939-5116
DOI - 10.1002/wnan.109
Subject(s) - regeneration (biology) , neural tissue engineering , tissue engineering , materials science , nanotechnology , scaffold , nervous system , nervous tissue , nanomaterials , biomedical engineering , neuroscience , biology , medicine , microbiology and biotechnology
Numerous biomaterials have provided promising results toward improving the function of injured nervous system tissue. However, significant hurdles, such as delayed or incomplete tissue regeneration, remain toward full functional recovery of nervous system tissue. Because of this continual need for better nervous system biomaterials, more recent approaches to design the next generation of tissue engineering scaffolds for the nervous system have incorporated nanotechnology, or more specifically, nanoscale surface feature dimensions which mimic natural neural tissue. Compared to conventional materials with micron‐scale surface dimensions, nanomaterials have exhibited an ability to enhance desirable neural cell activity while minimizing unwanted cell activity, such as reactive astrocyte activity in the central nervous system. The complexity of neural tissue injury and the presence of inhibitory cues as well as the absence of stimulatory cues may require multifaceted treatment approaches with customized biomaterials that nanotechnology can provide. Combinations of stimulatory cues may be used to incorporate nanoscale topographical and chemical or electrical cues in the same scaffold to provide an environment for tissue regeneration that is superior to inert scaffolds. Ongoing research in the field of electrically active nanomaterials includes the fabrication of composite materials with nanoscale, piezoelectric zinc oxide particles embedded into a polymer matrix. Zinc oxide, when mechanically deformed through ultrasound, for example, can theoretically provide an electrical stimulus, a known stimulatory cue for neural tissue regeneration. The combination of nanoscale surface dimensions and electrical activity may provide an enhanced neural tissue regeneration environment; such multifaceted nanotechnology approaches deserve further attention in the neural tissue regeneration field. WIREs Nanomed Nanobiotechnol 2010 2 635–647 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement