Premium
Analysis of shape data: From landmarks to elastic curves
Author(s) -
Bharath Karthik,
Kurtek Sebastian
Publication year - 2020
Publication title -
wiley interdisciplinary reviews: computational statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 38
eISSN - 1939-0068
pISSN - 1939-5108
DOI - 10.1002/wics.1495
Subject(s) - shape analysis (program analysis) , landmark , parametric statistics , translation (biology) , computation , rotation (mathematics) , transformation (genetics) , euclidean geometry , curse of dimensionality , computer science , parametric equation , mathematics , field (mathematics) , scaling , artificial intelligence , algorithm , geometry , pure mathematics , statistics , static analysis , biochemistry , chemistry , messenger rna , gene , programming language
Abstract Proliferation of high‐resolution imaging data in recent years has led to substantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two‐dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark‐based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape‐preserving transformation of a curve. The transition to the curve‐based approach moves the mathematical setting of shape analysis from finite‐dimensional non‐Euclidean spaces to infinite‐dimensional ones. We discuss some of the challenges associated with the infinite‐dimensionality of the shape space, and illustrate the use of geometry‐based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state‐of‐the‐art in the field. This article is categorized under: Image and Spatial Data < Data: Types and Structure Computational Mathematics < Applications of Computational Statistics