z-logo
Premium
High‐dimensional covariance matrix estimation
Author(s) -
Lam Clifford
Publication year - 2019
Publication title -
wiley interdisciplinary reviews: computational statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 38
eISSN - 1939-0068
pISSN - 1939-5108
DOI - 10.1002/wics.1485
Subject(s) - estimation of covariance matrices , covariance matrix , mathematics , covariance , sample size determination , statistics , dimension (graph theory) , cluster analysis , computer science , combinatorics
Covariance matrix estimation plays an important role in statistical analysis in many fields, including (but not limited to) portfolio allocation and risk management in finance, graphical modeling, and clustering for genes discovery in bioinformatics, Kalman filtering and factor analysis in economics. In this paper, we give a selective review of covariance and precision matrix estimation when the matrix dimension can be diverging with, or even larger than the sample size. Two broad categories of regularization methods are presented. The first category exploits an assumed structure of the covariance or precision matrix for consistent estimation. The second category shrinks the eigenvalues of a sample covariance matrix, knowing from random matrix theory that such eigenvalues are biased from the population counterparts when the matrix dimension grows at the same rate as the sample size. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Statistical and Graphical Methods of Data Analysis > Nonparametric Methods

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here