Premium
Effect of different types of anthropogenic pollution on the bacterial community of urban rivers
Author(s) -
Zhang Lei,
Cheng Yu,
Zhou Yi,
Lu Wenxuan,
Li Jing
Publication year - 2021
Publication title -
water environment research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 73
eISSN - 1554-7531
pISSN - 1061-4303
DOI - 10.1002/wer.1517
Subject(s) - pollution , environmental science , community structure , sediment , ecology , nitrogen cycle , water quality , nutrient pollution , ecosystem , microbial population biology , biology , nitrogen , bacteria , paleontology , physics , genetics , quantum mechanics
The health of urban rivers is threatened by multiple anthropogenic stressors. Bacterial communities in rivers can quickly respond to different types of polluted environments, making them useful for water quality assessments and predictive insights. However, research on river bacterial communities has largely ignored interactions between these communities. Here, 16S rRNA amplicon sequencing analysis is used to comprehensively analyze the bacterial communities in the water and sediments in different types of anthropogenically impacted urban river. The results show that distinct differences occur in the bacterial communities in the river sediment and water with different pollution types. The changes in the bacterial communities in sediments were more pronounced than those in the water. A modular analysis further showed that the microbial co‐occurrence network under different types of pollution had a nonrandom modular structure, and this structure was mainly driven by classification correlation and bacterial function. Genes identified for nitrogen cycling in all the river water and sediment samples included major functional genes for nitrogen fixation, assimilatory nitrogen reduction, nitrification, denitrification, and ammonification. Carbon degradation genes were mainly observed in the carbon cycle. Taken together, the above findings provide further insights into microbial communities in urban river ecosystems under anthropogenic contamination. Practitioner points The physical and chemical indicators of the four types of pollution drive bacterial community structure. Bacterial community has C, N, P metabolic genes indicating its ecological effect. River bacteria were connected more frequently in the same or similar type of pollution in the co‐occurrence network. Microbe–environment correlations and microbe–microbe interactions were combined to determine crucial indicators.