z-logo
open-access-imgOpen Access
Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea
Author(s) -
Sathe Ameya,
Gryning SvenErik,
Peña Alfredo
Publication year - 2011
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.456
Subject(s) - fetch , mast (botany) , environmental science , offshore wind power , wind stress , atmospheric instability , atmospheric sciences , log wind profile , wind speed , roughness length , boundary layer , wind profile power law , planetary boundary layer , meteorology , oceanography , climatology , geology , wind power , wind gradient , geography , physics , engineering , mechanics , mast cell , electrical engineering , immunology , biology
A comparison of the atmospheric stability and wind profiles using data from meteorological masts located near two wind farm sites in the North Sea, Egmond aan Zee (up to 116 m) in the Dutch North Sea and Horns Rev (HR; up to 45 m) in the Danish North Sea, is presented. Only the measurements that represent long marine fetch are considered. It was observed that within a long marine fetch, the conditions in the North Sea are dominated by unstable [41% at Egmond aan Zee Offshore Wind Farm (OWEZ) and 33% at HR] and near‐neutral conditions (49% at OWEZ and 47% at HR), and stable conditions (10% at OWEZ and 20% at HR) occur for a limited period. The logarithmic wind profiles with the surface‐layer stability correction terms and Charnock's roughness model agree with the measurements at both sites in all unstable and near‐neutral conditions. An extended wind profile valid for the entire boundary layer is compared with the measurements. For the tall mast at Egmond aan Zee, it was found that for stable conditions, the scaling of the wind profiles with respect to boundary‐layer height is necessary, and the addition of another length scale parameter is preferred. At the lower mast at HR, the effect was not noticeable. Copyright © 2011 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here