z-logo
open-access-imgOpen Access
A novel line drop secondary voltage control algorithm for variable speed wind turbines
Author(s) -
ElMoursi Mohamed S.
Publication year - 2010
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.385
Subject(s) - control theory (sociology) , wind power , transient voltage suppressor , engineering , controller (irrigation) , transient (computer programming) , induction generator , voltage , ac power , voltage drop , transient response , voltage controller , wind speed , voltage regulation , electric power system , power (physics) , voltage regulator , computer science , voltage droop , electrical engineering , control (management) , physics , artificial intelligence , meteorology , agronomy , quantum mechanics , biology , operating system
This paper addresses the design and implementation of the line drop secondary voltage control (LDSVC) for the doubly fed induction generator‐wind turbine (DFIG‐WT) complemented with reactive power allocation algorithm to achieve more efficient voltage regulation, reactive power compensation and to enhance the transient stability margin of the electric power system. The LDSVC is used to generate the local voltage reference, providing an improvement for overall voltage profile. The paper presents the influence of the integration of variable speed wind turbines‐based doubly fed induction generator (DFIG) while employing LDSVC for increasing the transient stability margin. This paper proposes an improved voltage control scheme, based on a secondary voltage controller complemented with an automatic gain controller (AGC). The scheme is applied to a wind energy system incorporating DFIG‐based wind turbines. The controller structure is developed and the performance of the self‐tuning AGC scheme is developed and analysed. The proposed controller is tested in response to system contingencies for different short circuit ratios. The performance of the secondary voltage control without and with AGC is verified. The influence of the AGC in improving the transient response and damping of voltage oscillations is verified. Copyright © 2010 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here