
Modelling utility‐scale wind power plants. Part 2: Capacity credit
Author(s) -
Milligan Michael R.
Publication year - 2000
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.36
Subject(s) - reliability (semiconductor) , wind power , renewable energy , scale (ratio) , turbine , reliability engineering , environmental economics , electricity , nameplate capacity , engineering , electricity generation , economics , power (physics) , electrical engineering , mechanical engineering , geography , physics , cartography , quantum mechanics
As the worldwide use of wind turbine generators in utility‐scale applications continues to increase, it will become increasingly important to assess the economic and reliability impact of these intermittent resources. Although the utility industry appears to be moving towards a restructured environment, basic economic and reliability issues will continue to be relevant to companies involved with electricity generation. This article is the second in a two‐part series that addresses modelling approaches and results that were obtained in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This second article focuses on wind plant capacity credit as measured with power system reliability indices. Reliability‐based methods of measuring capacity credit are compared with wind plant capacity factor. The relationship between capacity credit and accurate wind forecasting is also explored. Published in 2000 by John Wiley & Sons, Ltd.