
Review of wake management techniques for wind turbines
Author(s) -
Houck Daniel R.
Publication year - 2022
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.2668
Subject(s) - wake , wind power , turbine , maximization , marine engineering , cost of electricity by source , engineering , power (physics) , downstream (manufacturing) , electricity generation , computer science , aerospace engineering , automotive engineering , electrical engineering , operations management , physics , quantum mechanics , economics , microeconomics
Summary The progression of wind turbine technology has led to wind turbines being incredibly optimized machines often approaching their theoretical maximum production capabilities. When placed together in arrays to make wind farms, however, they are subject to wake interference that greatly reduces downstream turbines' power production, increases structural loading and maintenance, reduces their lifetimes, and ultimately increases the levelized cost of energy. Development of techniques to manage wakes and operate larger and larger arrays of turbines more efficiently is now a crucial field of research. Herein, four wake management techniques in various states of development are reviewed. These include axial induction control, wake steering, the latter two combined, and active wake control. Each of these is reviewed in terms of its control strategies and use for power maximization, load reduction, and ancillary services. By evaluating existing research, several directions for future research are suggested.