
Windstorm risk assessment for offshore wind farms in the North Sea
Author(s) -
Buchana Paul,
McSharry Patrick E.
Publication year - 2019
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.2351
Subject(s) - offshore wind power , wind power , environmental science , solvency , weibull distribution , wind speed , meteorology , capital requirement , business , engineering , finance , economics , statistics , geography , mathematics , profit (economics) , market liquidity , electrical engineering , microeconomics
The North Sea is becoming increasingly attractive to wind energy developers and investors, with 38 wind farms belonging to five different countries and representing over€35 billion of assets. Concerns about offshore wind turbines being damaged by extreme windstorms pose a challenge to insurers, investors and regulators. Catastrophe modeling can adequately quantify the risk. In this study, a Monte Carlo simulation approach is used to assess the number of turbines that buckle using maximum wind speeds reaching each wind farm. Damage assessment is undertaken for each wind farm using a log‐logistic damage function and a left‐truncated Weibull distribution. The risk to offshore wind power in the North Sea is calculated using an exceedance probability (EP) curve for the portfolio of wind farms. The European Union Solvency II directive requires insurance companies to hold sufficient capital to guard against insolvency. The solvency capital requirement (SCR) is based on a value‐at‐risk measure calibrated to a 99.5% confidence level over a 1‐year time horizon. The SCR is estimated at €0.049 billion in the case of yawing turbines. Simulations are repeated for different climate change scenarios. If wind speeds grow by 5% and the frequency of storms increases by 40%, the SCR is seen to rise substantially to €0.264 billion. Relative to the total value of assets, the SCR is 0.14% compared with 0.08% for European property, confirming that these wind farm assets represent a relatively high risk. Furthermore, climate change could increase the relative SCR to levels as high as 0.75%.